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Abstract—Cardiotocography has been used to record and 

monitor fetal heartbeat and uterine contractions, both 

antepartum and intrapartum for several decades now, albeit not 

without considerable controversy. The International Federation 

of Obstetrics and Gynecology (FIGO) guidelines were the first set 

of universally accepted classification guidelines for CTG signals. 

During labor, changes in the CTG are useful as indicators of fetal 

conditions. This paper aims to utilize CTG signal parameters to 

classify fetuses into three fetal states: normal, suspect and 

pathological and into 10 morphological patterns. 
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I. INTRODUCTION 

Cardiotocography is performed prenatally during the third 
trimester of pregnancy and is a crucial step in determining the 
overall health of the fetus and the probable time of delivery 
[2]. Statistically, between one and seven in a thousand fetuses 
experience acute oxygen deprivation, primarily acidosis, 
severe enough to cause permanent brain damage and death 
[3]-[5], [20]. The clinical significance of most of the fetal 
heart rate signals are well understood. A value of about 140 
beats per minute with fluctuations of 5-15 beats per minute is 
indicative of an adequate blood delivery and a responsive 
nervous system providing healthy modulation. Temporary 
decreases in fetal heart rate (less than 15 bpm for less than 15 
minutes) are indicative of strain on heart muscle or 
compression of the umbilical cord whilst short term 
accelerations are typical of a healthy fetus [6]. While the 
clinical implications of CTG signals are well understood, inter 
and intra subject variability can be a significant caveat. 

CTG signal are interpreted visually and are used to draw 
clinical inferences; however, their application has been rather 
inconsistent, subjective and prone to the obstetrician‟s 
discretion resulting in a significant false positive rate [7]. 

In this paper, we endeavor to produce a robust machine 
learning solution to the fetal classification problem, 
impervious to overfitting and with high generalizability. 
Unlike previous work, we endeavor to produce a machine 

learning system for prediction of both the fetal state and 
morphological state labels. 

II. RELATED WORK 

Cardiotocography analysis is a relatively old method to 
ascertain prenatal well-being. However, a computationally 
focused approach in its interpretation has only been explored 
at the turn of the millennium. Chen et al. [8] developed a 
LabView based system for analysis of the fetal heart rate 
(FHR) and uterine contractions (UC). The system showed 
promise with accuracy for FHR baseline at 100%, albeit the 
algorithm was tested on a rather small sample of 19 women. 

Bernardes et al. [9]-[11] produced some of the most 
influential work in automated cardiotocography based analysis 
of fetal health based on the guidelines prescribed by the 
International Federation of Obstetrics and Gynecology 
(FIGO). Magenes et al. [12], [13] employed an artificial neural 
network based system for classification of fetal conditions. 
Chung et al developed an algorithm to predict the onset of 
acidosis [14]. Georgoulas et al. [15] used a support vector 
machine based system to predict the onset of metabolic 
acidosis. Salamalekis et al. used features extracted from the 
FHR and pulse oximetry to predict fetal hypoxia [16]. Alonso-
Betanzos et al. created a computer aided fetal evaluator which 
integrated machine learning with traditional fetal health 
methodology [17]-[19]. 

III. DATA SET DESCRIPTION 

The data set used for our research was obtained from the 
online Machine Learning Repository maintained by the 
University of California, Irvine [15]. The data was obtained 
from the Cardiotocography dataset made publicly available by 
Dr Bernardes at the University of Porto, Portugal. The given 
dataset included 2126 instances of fetal cardiotocographic 
parameters. The set contained no missing features. 

The target labels for each of the data points were: 

1) Morphological pattern: The data classified into 10 

patterns namely calm sleep, REM sleep, calm and active 

vigilance, a constantly shifting pattern (in calm sleep), 
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accelerative or decelerative pattern due to both stress or vagal 

stimulation, a largely decelerative pattern, a flat sinusoidal 

pattern (pathological state) or a suspect pattern. 

2) FIGO labels: The data were also labeled in strict 

accordance with the FIGO guidelines as normal, suspect, or 

pathological, postpartum and were assumed to be ground 

truths. 
The distribution of the pathological labels is illustrated in 

Fig. 1 while the distribution of the morphological states is 
illustrated in Fig. 2. Table I describes the variables in the data 
set. 

 
Fig. 1. Pathological distribution of the data: The data contained 3 kinds of 

fetal states – normal, suspect, and pathological. 

 

Fig. 2. Morphological pattern distribution in the data: The data contained 10 
morphological patterns with the REM sleep containing the most in number 

(579). The flat sinusoidal pattern in the pathological state contained the 
least (53). 

TABLE I. VARIABLE DESCRIPTION. THE DATA USED CONTAINED 21 

VARIABLES AND 2 CLASS TARGET LABELS. THE FEATURES USED WERE ALL 

CONTINUOUS EXCEPT FOR THE HISTOGRAM TENDENCY WHICH WAS 

CATEGORICAL. THE CLASS VARIABLES WERE CODED AS CATEGORICAL 

DURING ANALYSIS. LBE WAS OBTAINED FROM A MEDICAL EXPERT WHILST 

THE REMAINING VARIABLES WERE OBTAINED FROM SISPORTO 

COMPUTERIZED ANALYSIS SYSTEM BUILT BY BERNARDES ET AL. [10] 

LBE baseline value (medical expert) 

LB baseline value  

AC accelerations  

FM fetal movement  

UC uterine contractions 

ASTV %age of time with abnormal short-term variability 

mSTV mean value of short term variability  

ALTV %age of time with abnormal long-term variability 

mLTV mean value of long term variability   

DL light decelerations 

DS severe decelerations 

DP prolonged decelerations 

DR repetitive decelerations 

Width histogram width 

Min low frequency of the histogram 

Max high freq. of the histogram 

Nmax number of histogram peaks 

Nzeros number of histogram zeros 

Mode histogram mode 

Mean histogram mean 

Median histogram median 

Variance histogram variance 

Tendency histogram tendency 

IV. METHODOLOGY 

A. Preprocessing 

The database collected needed to be pre-processed to 
remove possible errors and improve the quality of the machine 
learning models built from it. The first step in the pre-
processing pipeline was data visualization. For each of the 
categorical variables, a 5-number summary (minimum, first 
quartile, second quartile, third quartile, maximum, and range) 
along with the standard deviation was obtained. The 
categorical variables were coded as numerical levels. Boxplots 
and histograms for continuous variables were plotted using the 
ggplot2 package in R. Univariate regression models were built 
variable for each of the continuous variables. Chi-squared 
tests were carried out for each of the categorical variables. 
Missing value imputation was not necessary as the data was 
complete. The data was subsequently split into training and 
test as illustrated in Fig. 3. 

Pathological Distribution 

Normal Suspect Pathological

384 

579 

53 

81 72 

332 

252 

107 

69 197 

Morphological Patterns 

calm sleep

REM sleep

calm vigilance

active vigilance
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Fig. 3. Data split for training and test: The entire data consisting of 2126 

instances was split into 4 parts. Three of the four parts were used as training 
data and the final portion was held out until the very end where it was used as 

test data. 

After the data was cleaned, it was split 75:25 into training 
and test data respectively. Following the split, the training data 
was also subject to a near-zero-variance test. This resulted in 
the removal of variables with near zero variance in the data as 
they were not responsible for any predictive power in the 
models built subsequently, but only contributed in increasing 
the dimensionality of the data. 

The training data was subject to a 10-fold Cross validation 
repeated 10 times (Fig. 4). 

 

Fig. 4. Repeated K-Fold Cross Validation. A repeated 10-fold CV was 

applied. The 10-fold CV works by dividing the training data into 10 equal 

parts. These parts are iterated through 10 times. During each iteration, 9 of the 
10 parts are treated as training data, and the remaining 10th part as the 

validation set. The performance metrics are measured after each iteration. At 

the end, accuracy and kappa values are computed as measures of model 

performance. The above procedure is repeated 10 times. 

B. Spot Checking 

The data set was then subject to a series of spot checks. 
Several machine learning algorithms were applied to the data, 
with the goal of trying to find the highest intrinsic 
performance, i.e. the algorithm that generated the highest 
accuracy of prediction before its tuning parameters were 
manually adjusted. 

This was achieved using the caret package in R. The 
package performed a grid search to find the optimum 
hyperparameters for each of the algorithms. The spot check 
was carried out using the 10-fold Cross validation repeated 10 
times. The repeated CV works by splitting the training data 
into 10 folds, training the model on 9 of the folds and 
computing performance metrics on the hold-out fold (10

th
 

fold). This process is subsequently repeated 9 times. The 

repeated cross validation scheme results in 10 instances of the 
performance metric allowing for the computation of a 95% CI 
(Fig. 5). 

 

Fig. 5. Overview of the working of the various classification algorithms 

applied during spot-checking. A. Neural Networks. It consists of „neurons‟ 

which are essentially non-linear activations functions which „fire‟ when a 

condition is satisfied interspersed between the „layers‟ of the model. These 
layers are high dimensional matrices which are learnt by finding the global 

minimum of the error function. Once trained, the neural network is used to 

make predictions about unknown vectors. B. Support Vector Machines. This 
algorithm separates the data points of each class using a high dimensional 

hyperplane called optimum hyperplane by maximizing the distance between 

the points of the class (color coded as red and blue). C. Logistical Regression 
Classifier. A logistical regression works by finding the label of a vector using 

an exponential function. The coefficients of the exponential function are learnt 

by minimizing the error function. D. Tree Based methods. Tree based methods 
work by dividing the training data at nodes based on values of the predictors. 

Several such trees are built. When a new data point is to be assigned a label, 

individual trees vote on the label and the label with the highest frequency is 
assigned to the data point. 

The performance metrics for comparison were accuracy 
and kappa values. Accuracy is the proportion of correctly 
classified fetal states. However, this can be a misleading 
metric if the distribution of the output variable is unbalanced, 
i.e. if one of the classes contains far more instances in the 
training data than the other. Thus, the kappa value was 
included which denotes the square root of the proportion of 
variance in the output variable correctly explained by the 
model. 

C. Hyperparameter Tuning 

The last step involved tuning the hyperparameters of the 
best performing model identified from the previous step. The 
main aim of this procedure is to balance the bias and variance 
of the model. The model should perform with a high level of 
classification accuracy while still maintaining high 
generalizability to data points previously unseen by it. We also 
endeavored to ensure that the model is not susceptible to the 
nuances of the data and has not overfit to it. 

Maintaining the balance between bias and variance was 
done by manually tuning the complete set of hyperparameters 
of the model using nested cross validation (CV). Nested CV is 
a two-step validation procedure. It consists of 2 loops used for 
validation. The outer loop divides the data into m folds. The 
inner loop then performs k fold cross validation on each of the 
m folds with different hyperparameters. The result consists of 
surrogate models trained using different hyperparameters 
allowing us to identify the highest performing 
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hyperparameters. This method allows one to reduce bias error 
by making the model as flexible as possible while 
simultaneously monitoring the variance error via the 
performance on the validation set. This main aim is to locate 
the minimum of the sum of the bias and the variance error. 
The process is illustrated in Fig. 6. 

Thus, with the model parameters finalized, the model was 
then used for prediction of the regulatory success of unknown 
drugs in the test set. 

 
Fig. 6. Nested cross validation: The nested CV consists of 2 loops; the inner 

loop performs cross validation on the training data that is selected by the outer 
loop in 1 iteration. Subsequently, the parameters learnt are tested on the 

holdout set of that iteration. This process then repeats itself on different 

training data selected by the next iteration of the outer loop. 

V. RESULTS 

A. Spot Checking Results 

The spot checking was carried out on the training data 
using the 10-fold repeated Cross validation. This process 
yielded 10 metrics of comparison accuracy. To better 
understand algorithmic performance, the 95% confidence 
intervals were calculated for each (Table II). 

TABLE II. 95% CONFIDENCE INTERVALS FOR ALGORITHMIC ACCURACY 

ON THE MORPHOLOGICAL STATE LABEL. THE TABLE DISPLAYS THE RESULTS 

OF THE 10-FOLD REPEATED CROSS VALIDATION. THE 95% CONFIDENCE 

INTERVALS ASSUME A NORMAL DISTRIBUTION OF ACCURACY 

Sr. 

No 
Model Name Lower Bound Upper bound 

1 Random Forest 0.852 0.884 

2 GLM 0.805 0.849 

3 K Nearest neighbors 0.73 0.771 

4 Artificial Neural Nets 0.777 0.823 

5 Support Vector Machines 0.824 0.858 

TABLE III. 95% CONFIDENCE INTERVALS FOR ALGORITHMIC ACCURACY 

ON THE FIGO FETAL LABELS. THE TABLE DISPLAYS THE RESULTS OF THE 10-
FOLD REPEATED CROSS VALIDATION. THE 95% CONFIDENCE INTERVALS 

ASSUME A NORMAL DISTRIBUTION OF ACCURACY 

Sr. 

No 
Model Name Lower Bound Upper bound 

1 Random Forest 0.9242053 0.9454714 

2 GLM 0.8803536 0.9028288 

3 K Nearest neighbors 0.8804376 0.906448 

4 Artificial Neural Nets 0.8888815 0.9269203 

5 Support Vector Machines 0.8971566 0.9261896 

The Cross-validation accuracy is indicative of the 
algorithmic performance on test data since in each iteration, 
one-fold is left out as a hold-out set. Repeated CV is a good 
method to estimate test error. However, as rightly pointed out 
by Tibshirani and Hastie [22], the training data is already 
preprocessed. This induces some bias into the model. The 
results of the repeated CV are thus interpreted with caution. 
The results of the test data shown in Table III are presented in 
Fig. 8. 

B. Nested Cross Validation and Test Results 

Nested Cross-Validation was performed to obtain the 
highest algorithmic accuracy whilst ensuring that the model is 
generalizable. 

Tables IV and V present algorithmic accuracy post 
hyperparameter tuning. In addition to accuracy, kappa values 
are also represented. Kappa values are an essential tool to 
understand algorithmic performance as they signify the 
proportion of the variance in the output target variable 
explained by the model. Although varying schools of thought 
express interpretations of the kappa values differently, a value 
above 0.8 is accepted to be indicative of high accuracy. The 
results of the test data shown in Table IV are presented in 
Fig. 7. 

TABLE IV. ACCURACY AND KAPPA FOR ALGORITHMIC ACCURACY ON 

THE MORPHOLOGICAL STATE LABEL. THE TABLE DISPLAYS THE RESULTS OF 

THE TEST DATA. A KAPPA VALUE OF GREATER THAN 0.75 IS ACCEPTABLE 

Sr. 

No 
Model Name Accuracy Kappa Value 

1 Random Forest 0.868 0.842 

2 GLM 0.827 0.793 

3 K Nearest neighbors 0.751 0.700 

4 Artificial Neural Nets 0.800 0.759 

5 Support Vector Machines 0.841 0.810 

TABLE V. ACCURACY AND KAPPA FOR ALGORITHMIC ACCURACY ON 

THE FETAL PATHOLOGICAL STATE LABEL. THE TABLE DISPLAYS THE 

RESULTS OF THE TEST DATA. A KAPPA VALUE OF GREATER THAN 0.75 IS 

ACCEPTABLE 

Sr. 

No 
Model Name Accuracy Kappa Value 

1 Random Forest 0.934 0.817 

2 GLM 0.891 0.700 

3 K Nearest neighbors 0.893 0.690 

4 Artificial Neural Nets 0.907 0.747 

5 Support Vector Machines 0.911 0.810 
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Fig. 7. Box plots for Accuracy and Kappa for Algorithmic Accuracy on the 

Morphological State Label. The figure displays the results of the test data in 

Table IV. 

 
Fig. 8. Box plots for Accuracy and Kappa for Algorithmic Accuracy on the 

Fetal State Label. The figure displays the results of the test data in Table III. 

In both cases, the random forest fits well to the data. The 
variable importance levels for the random forest algorithm are 
illustrated in Fig. 9 and 10. 

  
Fig. 9. Variable importance plots for the Random Forest on the 

Morphological State Label. The table displays the degrees of importance for 

each of the variables in predicting morphological states. 

  
Fig. 10. Variable importance plots for the Random Forest on the Fetal State 

Label. The table displays the degrees of importance for each of the variables 

in predicting the fetal pathological states. 

VI. DISCUSSION 

Interpretation of cardiotocography has been an incessantly 
debated topic, and a litany of malpractice litigations and 
controversies mar its short history [1]. Inter and intra observer 
variability has been the biggest barrier in the effective 
interpretation of cardiotocographic data. The FIGO 
(International Federation of Obstetrics and Gynecology) in the 
1980s provided the first set of internationally accepted 
guidelines and consequently several regional variations of 
these guidelines were adopted, around the world. However, 
these guidelines have proven to be very complex and difficult 
to follow [23] resulting in the high variability of interpretation. 

To lower the inter-intra-observer variability in the 
interpretation of fetal data, a computationally focused 
approach is necessary. Previous approaches to classification of 
fetal cardiotocographic data may have been hampered by 
small sample sizes. Small data sets and high dimensionality 
are patent problems in computationally focused approaches to 
fetal classification and often result in overfitting of the models 
to data [8]. This results in low out-of-sample performance and 
a lack of generalizability of the model. 

This study endeavored to overcome these caveats. The 
data used in the model was labeled in strict adherence to FIGO 
guidelines. This automatically eliminated the conundrum of 
inter-intra-observer variability. The sample size for the study 
was adequate for deep learning methods as well (N = 2126), a 
rarity in bioinformatics. The data was pre-processed to remove 
possible confounding variables. The machine learning models 
were also trained using several robust training techniques like 
repeated cross validation. This ensured that the model built 
was impervious to overfitting. 

However, the most significant advantage of the system 
developed through this study is its ability to out-perform 
human obstetricians in identifying pathological fetuses. The 
accuracy of diagnosis of pathological fetuses by human 
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obstetricians ranges between 50-66% [24], [25]. This system 
outperforms human obstetricians significantly with an excess 
of 25 percentage points in accuracy. 

The next challenge in cardiotocographic based prediction 
systems lies in real-time diagnosis. Using continuous time 
recurrent neural networks and other time series based 
classifiers may be the next incremental innovation in 
predicting fetal health. 

VII. CONCLUSION 

Although the figure in the UK still stands at 8 perinatal 
deaths in 1000, the global figure has been on the decline from 
4.5 million perinatal deaths annually in 1990 to about 2.6 
million in 2013. Infant respiratory distress syndrome is the 
leading cause of these deaths and affects 1% of all infants 
[21]. And thus, it is imperative that advanced diagnostic 
procedures be used to prevent the permanent and often fatal 
effects of respiratory distress. In this paper we attempted to 
address this problem through a computationally focused 
approach. 

The paper explores solutions to two classification 
problems based on the cardiotocography data obtained from 
2126 fetuses. The data was preprocessed, and fit to several 
high performing machine learning algorithms with high 
generalizability as indicated by a low estimated test error. The 
best of these models was then fine-tuned to obtain the final 
models. 
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